Information submitted by Japan upon the request from the Minamata Convention secretariat on effectiveness evaluation

Pursuant to the Decision MC-2/10 of the COP2 of the Minamata Convention, parties, other governments and relevant organizations are requested to provide information on their monitoring programme to the secretariat. Hereunder, Japan submits relevant information to supplement document UNEP/MC/COP.2/INF/8. This submission supersedes Japan's previous submission for the "information on the availability of monitoring data" for INC7 based on request for further work made at INC6.

-		88	icted by Ministry of the Environment (N		
Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
Air	Speciated mercury - Gaseous elemental mercury (GEM) - Gaseous oxidized mercury (GOM) - Particulate-bound mercury (PBM)	Using Tekran - Cold vapor atomic fluorescence spectrometry with denuder collection for GOM and quartz fiber filter collection for PBM (heating vaporization method)	Cape Hedo (Okinawa pref.) Oga Peninsula (Akita pref.)	Cape Hedo: Since Oct. 2007 (GEM) Since Oct. 2009 (GOM, PBM) Oga Peninsula: Since Aug. 2014 Continuous sampling - 16 measurements per day (hourly value for GEM) - 8 measurements per day (two-hour value for GOM and PBM)	Monitor data. The element precipita measuri zinc, ars
Precipitation	Total mercury (Trig)	Equivalent EPA method 1051, Revision E	Oga Peninsula (Akita pref.)	Oga Peninsula: Since Apr. 2008 Weekly 7-day continuous sampling	data. The element precipit and san
Air	Total gaseous mercury (TGM)	Atomic absorption spectrometry with gold amalgamation and heating vaporization (following "Monitoring Manual for Hazardous Air Pollution Survey" (MOE, 2011))	Nationwide 261 sites (in FY2016) - Ambient air 214 sites - Stationary sources 18 sites - Roadside 39 sites	Since FY1998 Monthly 24 hour continuous sampling	Monitor data. ^[3] date, mo directio atmospl results o arsenic, etc.).
Water - River - Lake/Reservoir - Sea	THg Alkyl mercury	THg: Atomic absorption spectrometry Alkyl mercury: Gas chromatography analysis (following "Monitoring Manual for Water Quality Survey" (MOE, 1961))	THg: River 2,928 sites, Lake/Reservoir 241 sites, Sea 834 sites (in FY2016) Alkyl mercury: River 505 sites, Lake/Reservoir 65 sites, Sea 167 sites (in FY2016)	Since 1971 Monthly in general	Monitor data. ^[5] date, de standard total cya
Seawater - Surface water - Deep water Sea sediment Biota - Marine species	THg	 Seawater: (a) Heated vaporization atomic absorption spectrometry with reduced vaporization and gold amalgamation (b) Atomic fluorescence spectrometry with Cr²⁺ reduced vaporization Sediment and biota: (a) After acid digestion, analyzed using the same method as water media (a) (b) Microwave digestion and ICP-MS measurement (following "Marine Environment Monitoring Guideline" (MOE, 2000)) 	 Seawater and sediment: Coastal sea and offshore deep sea area around Japan 8 survey lines (surveillance for land-based pollution) 1-2 areas per year (surveillance on pollution caused by ocean dumping of wastes) Biota: 4 bay areas and 4 offshore sea areas around Japan Target organism: Mussles, Benthic sharks, Squids, Cods, Crustaceans 	Annually Seawater and sediment: Since FY1975 The survey is planned to cover Japanese water in 8 years (2-10 year intervals per survey line). Biota: Since FY1998 Bay areas and offshore sea areas are surveyed alternately every year after FY2008.	Monitor data. ^[3] - latit salir cadı - latit tota sulf dioz - latitu
Human - Maternal blood - Umbilical cord blood - Urine - Breast Milk - Hair	THg Methyl mercury (MeHg)	Blood samples collected at approximately 22th-28th week of pregnancy	Nationalwide 15 areas Approximately 100,000 pregnant women (60,000 blood samples were determined.)	Since 2014 Start analyzing a part of cord blood samples	Monitor Identific lifestyle through
	Air Precipitation Air Air Air Vater - River - Lake/Reservoir - Sea Seawater - Surface water - Deep water Sea sediment Biota - Marine species Human - Maternal blood - Urbilical cord blood - Urine - Breast Milk	AirSpeciated mercury - Gaseous elemental mercury (GEM) - Gaseous oxidized mercury (GOM) - Particulate-bound mercury (PBM)PrecipitationTotal mercury (THg)AirTotal gaseous mercury (TGM)AirTotal gaseous mercury (TGM)Water - River - Lake/Reservoir - SeaTHg Alkyl mercurySeawater - Deep water Sea sediment Biota - Marine speciesTHgHuman - Maternal blood - Urine - Breast MilkTHg	Media Mercury species Methodology / analytical method Air Speciated mercury - Gaseous elemental mercury (GEM) - Gaseous oxidized mercury (GOM) - Cold vapor atomic fluorescence spectrometry with denuder collection for GOM and quartz fiber filter collection for PBM (heating vaporization method) Precipitation Total mercury (THg) Equivalent EPA method 1631, Revision E Air Total gaseous mercury (TGM) Atomic absorption spectrometry with gold amalgamation and heating vaporization (following "Monitoring Manual for Hazardous Air Pollution Survey" (MOE, 2011)) Water THg THg: Atomic absorption spectrometry Alkyl mercury: Gas chromatography analysis (following "Monitoring Manual for Water Quality Survey" (MOE, 1961)) Seawater THg Seawater: (a) Heated vaporization and gold amalgamation and gold amalgamation Biota THg Seawater: (a) After acid digestion, analyzed using the same method as water media (a) (b) Microwave digestion and ICP-MS measurement (following "Marine Environment Monitoring Guideline" (MCE, 2000)) Human THg blood Blood samples collected at approximately 22th-28th week of pregnancy	Media Mercury species Methodology / analytical method Location / number of samples Air Speciated mercury - Gaeous scillated - Cold vapor atomic fluorescence spectrometry with denular collection for GOM and quarts fiber fiber collection for GOM and quarts fiber fiber collection for BPM (heating vaporization method) - Cape Hedo (Okinawa pref.) Precipitation Total mercury (THg) Equivalent EPA method 1631, Revision E Cape Hedo (Okinawa pref.) Air Total gaseous Atomic absorption spectrometry with gold managamation and heating vaporization - Ambient air 214 sites - Stationary sources 18 sites Air Tutg gaseous mercury (TGM) Atomic absorption spectrometry with gold following "Monutoring Manual for Hazardous Air Follution Survey" (MOE, 2011)) - Ambient air 214 sites - Stationary sources 18 sites - Lake/Reservoir THg Thg: Atomic absorption spectrometry and particulation of the states (in FY2016) - Ambient air 214 sites - Roadside 39 sites Seawater THg Thg: Atomic absorption spectrometry with (bulk) mercury: Circ of boto days at (in FY2016) - Ambient air 214 sites - Roadside 39 sites Seawater THg Thg: Atomic absorption spectrometry with (bulk) mercury Circ of boto days at (in FY2016) - Ambient air 214 sites - Stationary sources 18 sites <t< td=""><td>Media Metrury species Methodology / analytical method Location / number of sampler Monitoring period and frequency Air Specified mercury (GPA) - Cody sport atomic fluorescence spectrometry with dendar collection for GOM and querit fibri filter Cope (Edo (Gkinawa pref.)) Cape Hedo (Skinawa pref.) Cape Hedo (Skinawa pref.)</td></t<>	Media Metrury species Methodology / analytical method Location / number of sampler Monitoring period and frequency Air Specified mercury (GPA) - Cody sport atomic fluorescence spectrometry with dendar collection for GOM and querit fibri filter Cope (Edo (Gkinawa pref.)) Cape Hedo (Skinawa pref.) Cape Hedo (Skinawa pref.)

Details of available data (as of January 2019)

toring results until FY2017 are available as individual The dataset includes latitude/longitude, meteorological ents (wind speed and direction, temperature, humidity, pitation, atmospheric pressure, etc.)^{*1}, and metals uring results of 23 elements (lead, cadmium, copper, arsenic, etc.)^{*2}.

toring results until FY2017 are available as individual The dataset includes latitude/longitude, meteorological ents (wind speed and direction, temperature, humidity, pitation, atmospheric pressure, etc.)^{*1}, wet deposition, ample amounts.

toring results until FY2016 are available as individual ^{3]} The dataset includes latitude/longitude, sampling meteorological elements (weather, wind speed and tion, temperature, humidity, precipitation, and spheric pressure), detection limit, and measurement as of hazardous air pollutants (chromium, nickel, ic, beryllium, manganese, acrylonitrile, vinyl chloride,

toring results until FY2016 are available as individual ^{5]} The dataset includes latitude/longitude, sampling depth, and substances of environmental quality ards for water (cadmium, lead, chromium(VI), arsenic, cyanide, etc.).

toring results until FY2015 are available as individual ^{3]} The dataset includes:

titude/longitude, sampling depth, water temperature, alinity, pH, dissolved oxygen, nutrient, chlorophyll a, admium, lead, copper, PCB, dioxins, etc. (seawater)

titude/longitude, moisture content, median diameter, otal nitrogen, total phosphorous, organic carbon, ulfide, cadmium, lead, copper, chromium, PCB, ioxins, etc. (sediment)

itude/longitude, lipid content, PCB, dioxins, etc. (biota)

toring results are available as statistics.

ified health conditions, ambient environment and yles of participants (pregnant women and children) gh questionnaires.

Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	Details of availa
Survey of the	Human	Blood: THg	Age: 40-59 years	Nationalwide (Urban, agricultural, and	Since 2011	Monitoring results until
Exposure	- Blood	Food: THg, MeHg	Blood (THg): Acid digestion and cold vapor	fishery area)	Annually	mean, standard deviatio
to chemical	- Food		atomic absorption spectrometry	Blood: Approximately 80 people per year	3 regions per year	also analyzed for lead, o
compounds			Food (THg): Freeze drying, acid digestion and	Total 490 people in 2011-2016		selenium, zinc, mangan
in Human ^[9]			cold vapor atomic absorption spectrometry	Food: 15 people per year		Information on personal
			Food (MeHg): Freeze drying, dithizone	Total 90 people in 2011-2016		occupational history, sn
			extraction, and GC-ECD measurement			lifestyle, and birth histo
						individual interviews.

*1: Observation results in nearby meteorological observation stations.

References [1] MOE, 2018. "Results on Background Monitoring Survey for Atmospheric Mercury and Other Metal Element Concentrations in Aerosols", Online: https://www.env.go.jp/en/chemi/mercury/bms2017.html

*2: 7-day continuous sampling

[2] MOE. "Monitoring Surveillance of Hazardous Air Pollutants", Online: https://www.env.go.jp/air/osen/monitoring/ (in Japanese).

[3] National Institute for Environmental Studies. "Environment-GIS", Online: http://tenbou.nies.go.jp/gis/ (in Japanese).

[4] MOE. "Water Quality Survey of Public Water Areas", Online: https://www.env.go.jp/water/suiiki/index.html (in Japanese).

[5] MOE. "Water Environment Information", Online: https://water-pub.env.go.jp/water-pub/mizu-site/ (in Japanese).

[6] MOE. "Marine Environment Monitoring Survey", Online: http://www.env.go.jp/water/kaiyo/monitoring.html (in Japanese).

[7] MOE, Oct. 2009. "Present Status of Marine Pollution in the Sea around Japan", Online: http://www.env.go.jp/water/kaiyo/monitoring/status_report/en-1.pdf, http://www.env.go.jp/water/kaiyo/monitoring/status_report/en-2.pdf

[8] MOE. "Japan Environment and Children's Study (JECS)", Online: http://www.env.go.jp/chemi/ceh/en/index.html

[9] MOE, 2017. "The Exposure to chemical compounds in the Japanese People", Online: https://www.env.go.jp/chemi/dioxin/pamph/cd/2017en_full.pdf

Table 2. Monitoring conducted by National Institute for Minamata Disease (NIMD)

Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
-	Air	Air: Speciated	Speciated mercury: Atomic absorption	Minamata (Kumamoto pref.)	Speciated mercury: Jan. 2011- Dec. 2013,	Moni
	Precipitation	mercury (GEM,	spectrometry with gold amalgamation and		6-8 days every month or season	meta
		GOM, PBM),	heating vaporization (following "Monitoring		PBM: Since Sep. 2008, weekly	mete
		PBM, TGM	Manual for Hazardous Air Pollution Survey",		TGM: Since Mar. 2011, continuous	
		Precipitation:	(MOE, 2011))		sampling	
		THg, MeHg	PBM: Filter pack method		Precipitation: Since Sep. 2008, weekly	
			TGM: Continuous mercury monitor using gold		(MeHg finished measurement in May 2013)	
			amalgamation and cold vapor atomic	Hirado (Nagasaki pref.)	Speciated mercury: Aug. 2011- Apr. 2014,	Moni
			fluorescence spectrometry (Nippon		6-8 days every season	meta
			Instruments Co., Ltd.)		PBM: Since Jun. 2011, weekly	elem
			THg and MeHg: Equivalent EPA method 1631,		Precipitation: Since Sep. 2008, weekly	
			Revision E		(MeHg finished measurement in May 2013)	
		Air: Speciated	Speciated mercury: Using Tekran	Fukuoka (Fukuoka pref.)	Speciated mercury: Since Jun. 2013	Mon
		mercury (GEM,	- Cold vapor atomic fluorescence spectrometry		(continuous sampling)	Mete
		GOM, PBM), PBM	with denuder collection for GOM and quartz		PBM: Since Jun. 2013, weekly	
		Precipitation: THg	fiber filter collection for PBM (heating		Precipitation: Since Jun. 2013, weekly	
			vaporization method)			
			PBM: Filter pack method			
			THg: Equivalent EPA method 1631, Revision E			
		Air: PBM	PBM: Filter pack method	Omaezaki (Shizuoka pref.)	PBM: Since Dec. 2013, weekly	Mon
		Precipitation: THg	THg: Equivalent EPA method 1631, Revision E		Precipitation: Since Dec. 2013, weekly	Preci

References [1] Marumoto, K. and Matsuyama, A. (2014). Mercury speciation in wet deposition samples collected from a coastal area of Minamata Bay. Atmospheric Environment 86, 220-227.

[2] Marumoto, K., Hayashi, M., Takami, A. (2015). Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmospheric Environment 117, 147-155.

Details of available data (as of January 2019)

toring results until FY2016 are available as statistics: , standard deviation, median, and range. Tissues are analyzed for lead, cadmium, total arsenic, copper, ium, zinc, manganese, dioxins, POPs, etc. mation on personal medical history, residential history, pational history, smoking habit, dietary history, yle, and birth history are collected by questionnaire and

Details of available data (as of January 2019)

onitoring results are available as individual data. Heavy stal concentrations in atmosphere, carbon monoxide, and steorological elements are also observed.

onitoring results are available as individual data. Heavy tal concentrations in atmosphere and meteorological ments are also observed.

onitoring results are available as individual data. eteorological elements are also observed.

onitoring results are available as individual data. ecipitation is also observed.

Mercury species Media Methodology / analytical method Monitoring period and frequency Programme Location / number of samples Atmospheric and Precipitation THg Cold vaper atomic absorption Minamitorishima (Tokyo Metropolis) Minamitorishima: Since Jan. 1996 Mor spectrophotometry (following method of Marine Ryori (Iwate pref.) Ryori: Jan. 1976- Dec. 2011 indiv Environment World Meteorological Organization (WMO) Daily prec Monitoring^{[1], [2], [3]} (2004))alka sodi chlo Met direc THg Water samples are collected at the depth of 0m Since 1972 Mor Seawater Sea area around Japan (9 sites) and the western North Pacific (long 137E and - Surface water and approximately 1,000m. (Reliable data is available since 1995. indiv - Deep water Analysis: Flameless atomic absorption 165E observation lines.) Several monitoring sites were altered latit salinity, spectrophotometry in 2010.) Seasonally (1-4 times per year in each site)

Table 3. Monitoring conducted by Japan Meteorological Agency (JMA)

[1] JMA. "Annual Report on Atmospheric and Marine Environment Monitoring Data", Online: https://www.data.jma.go.jp/gmd/env/data/report/data/index_e.html References

[2] JMA. "Chemical analysis of precipitation and dry deposition", Online: https://www.data.jma.go.jp/gmd/env/acid/acid obs.html (in Japanese).

[3] JMA, 2015. "Health Diagnosis of the Ocean, Comprehensive Diagnosis Result - rev. 2", Online: http://www.data.jma.go.jp/kaiyou/shindan/sougou/index.html (in Japanese).

Table 4. Monitoring conducted by Japan Coast Guard

Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	Details of available data (as of January 2019)
Report of Marine	Surface sea water	THg	Seawater: Atomic fluorescence spectrometry	13 coastal seas, 53 sites (including Tokyo	Since 1973	Monitoring results until FY2016 are available as individual
Pollution Surveys ^[1]	Sea sediment		(cold vapor method) with reduced	Bay, Ise Bay, and Osaka Bay) and offshore	Annually	data. The dataset includes sampling date, latitude/longitude,
			vaporization and gold trap separation	sea area 10 sites		and depth. Sea water monitoring additionally include
			Sediment: Atomic absorption			sampling depth, water temperature, salinity, pH, dissolved
			spectrophotometry (cold vapor method)			oxygen, chemical oxygen demand, concentrations of oil
			with heating vaporization, and in turn gold			(Aliphatic Hydrocarbons) and cadmium. Sediment
			trap separation			monitoring results include ignition loss, particle size
						distribution, bottom character, concentrations of oil
						(Aliphatic Hydrocarbons), PCB, TBT, cadmium, copper,
						zinc, chromium, and lead.

[1] The Hydrographic and Oceanographic Department, Japan Coast Guard. "Report of Marine Pollution Surveys", Online: http://www1.kaiho.mlit.go.jp/KANKYO/OSEN/osen.html (in Japanese). References

Details of available data (as of January 2019)
nitoring results until FY2016 are available as
ividual data. The dataset includes sampling date,
cipitation, sample amount, pH, electrical conductivity,
alinity, concentrations of cadmium, ammonium ion,
ium ion, potassium ion, calcium ion, magnesium ion,
oride, nitrite ion, nitrate ion, and sulfate ion.
teorological elements (maximum wind speed and wind
ection) are also observed.
nitoring results until FY2016 are available as
ividual data. The dataset includes sampling date,
tude/longitude, sampling depth, water temperature,
nity, and concentrations of cadmium.

Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
Monitoring for	Food	Agricultural	Rice, wheat and soybeans were obtained from	Agricultural products: 31 food items (grains,	Agricultural products:	FY20
Chemical Hazards	- Agricultural	products: THg	grain drying and processing facilities.	beans, vegetables, fruits, etc.)	In FY2006	statis
in Foods ^{[1], [2], [3],}	products		Vegetables and fruits were obtained from	- Total 1,420 samples	Fishery products:	limit
[4]	- Fishery products	Fishery products:	fields and collection/shipment facilities.	Fishery products: Tunas, Marlins, Splendid	In FY2007-2010	
		THg, MeHg	Fishery products were obtained at main	alfonsino, Blue shark, Cods		
			fishing ports and edible portion was used for	- Total 1,800 samples (120 samples for		
			analysis.	each 15 fish species) within 4 fiscal years		
			THg analysis of agricultural products:			
			Wet digestion and atomic absorption			
			spectrophotometry with reduced			
			vaporization (Equivalent AOAC Official			
			Method 971.21)			
			THg analysis of fishery products:			
			Using mercury analyzer HG-200			
			(Hiranuma Inc.) after digestion with nitric			
			acid, perchloric acid and sulfuric acid.			
			MeHg analysis of fishery products:			
			Gas chromatography analysis after solvent			
			extraction with solutions of chloric acid,			
			benzene, cysteine			
	Food	THg	Cans were purchased at supermarkets and at	Sweet corns: 39 samples	In FY2011	FY20
	- Canned		retail stores in Tokyo region.	Red beans: 39 samples		mean
	vegetables			Tomatoes: 33 sample		mg/k
			Analysis: Microwave digestion and ICP-MS			
			measurement			
	Food	THg	Food samples were purchased at department	Agricultural products: Fruits	In FY2013	FY20
	- Agricultural		stores and at local supermarkets all over	- Total 101 samples		mean
	products		Japan.	Livestock products: Milk		mg/k
	- Livestock			- Total 40 samples		
	products		Analysis: Microwave digestion and ICP-MS	Processed food: Dairy products, fruits juices,		
	- Processed food		measurement	etc.		
				- Total 90 samples		
	Food	THg		Agricultural product: Celery, Asparagus	In FY2015	FY20
	- Agricultural			- Total 120 samples		mean
	products			Processed food: Canned soybeans, pickled		mg/k
	- Processed food			vegetables, jams, fruits juices, etc.		
				- Total 108 samples		

Table 5. Monitoring conducted by Ministry of Agriculture, Forestry and Fisheries (MAFF)

References

[1] MAFF, 2012. "Data Collection of the Results of Surveillance / Monitoring for Chemical Hazards in Foods 2003-2010", Online: http://www.maff.go.jp/j/syouan/seisaku/risk_analysis/survei/pdf/chem_15-22.pdf (in Japanese). [2] MAFF, 2014. "Data Collection of the Results of Surveillance / Monitoring for Chemical Hazards in Foods 2011-2012", Online: http://www.maff.go.jp/j/syouan/seisaku/risk_analysis/survei/pdf/chem_23-24_.pdf (in Japanese).

[3] MAFF, 2016. "Data Collection of the Results of Surveillance / Monitoring for Chemical Hazards in Foods 2013-2014", Online: http://www.maff.go.jp/j/syouan/seisaku/risk_analysis/survei/pdf/chem_25-26.pdf (in Japanese). [4] MAFF, 2018. "Data Collection of the Results of Surveillance / Monitoring for Chemical Hazards in Foods 2015-2016", Online: http://www.maff.go.jp/j/syouan/seisaku/risk_analysis/survei/pdf/chem_27-28.pdf (in Japanese).

2007-FY2010 monitoring results are available as tistics: mean, median, minimum, maximum, detection nit (0.01 mg/kg), and a number of undetected samples. 2011 monitoring results are available as statistics: an, median, minimum, maximum, detection limit (0.01 (kg), and a number of undetected samples.

Details of available data (as of January 2019)

2013 monitoring results are available as statistics: ean, median, minimum, maximum, detection limit (0.01 g/kg), and a number of undetected samples.

2015 monitoring results are available as statistics: ean, median, minimum, maximum, detection limit (0.01 (kg), and a number of undetected samples.

				Table 0. Monitoring conducted by) _ · · · · · · · · · · · · · · · · · ·		
Responsible party	Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
Niigata Prefectural Government, Niigata Prefectural Institute of Public	Water quality survey for public water body and groundwater ^[1]	Groundwater Spring water	THg Alkyl mercury	Ground water and spring water samples are collected at solid waste landfill sites around factories.	Agano river Total 24 samples (in FY2017)	Since FY2006 3 times per year (in FY2017)]
Health and Environmental Science	Sediment Mercury Survey at the Agano River ^[1]	Sediment	THg Alkyl mercury		Agano river basin Total 4 samples (in FY2017)	Since FY2008 4 times per year (in FY2017)	1
	Mercury Content Survey in Fish at the Agano River ^[1]	Fish	THg MeHg		Agano river 3 sites Total 45 samples (in FY2017) - Japanese dace	Since FY1987 Annually	
	Mercury survey at the Seki River ^[1]	Fish	THg MeHg	MeHg analysis is performed if THg exceed interim regulation value of 0.4 µg/g wet.	Seki river Total 45 samples (in FY2017) - Japanese dace	Since FY2006 Annually]
			THg Alkyl mercury	Analysis of Alkyl mercury is performed if THg exceed interim regulation value of 0.4 µg/g wet.	 Seki river Total 90 samples (in FY 2017) 9 fish species (Japanese fluvial sculpin, Amur minnow, Weather loach, Pale bleak, etc.) 	Since FY2003 Annually] * ! ;
Saitama Prefecture	River Water Monitoring Survey ^[2]	Water - River	THg Alkyl mercury	THg: Atomic absorption spectrometry Alkyl mercury: Gas chromatography analysis (following "Monitoring Manual for Water Quality Survey" (MOE, 1961))	Shingashi river 2 sites - Upstream and downstream of industrial waste disposal sites	Since FY1995 Annually	1 1 1
Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government	Mercury Contamination Survey in Seafood ^[3]	Seafood	THg MeHg	Seafood is obtained from central wholesale market in Tokyo (including fish and shellfish caught in various locations in Japan and foreign countries.)	Total 428 samples 139 species of fish and shellfish	Since FY1973 Annually	1
Kumamoto Prefectural Government, Kumamoto Prefectural Institute of Public Health and Environmental Science	Minamata bay Water Environment ^[4]	Seawater Groundwater Sediment	THg		Minamata Bay - Seawater: 8 samples - Groundwater: 4 samples - Sediment: 3 samples (in FY2017)	Since FY1998 Annually	l v t
Kagoshima Prefecture	Mercury analysis contained in human hair ^[5]	Human - Hair	THg		Residents in coastal area of the Siranui sea (member of fisheries cooperative association) Total 15 people (in FY2016)	Since 1977 Annually] : 1
Kagoshima Prefectural Institute for Environmental Research and Public Health	Mercury Content Survey in Fish ^[6]	Fish	THg MeHg		 Kagoshima Bay Total 40 samples (in FY2016) - 7 fish species (Areolate grouper, Young Japanese amberjack, Red seabream, Japanese whiting, etc.) 	Annually	, 1

Table 6. Monitoring conducted by Local Governments in Japan

Details of available data (as of January 2019)

Monitoring results until FY2017 are available as statistics: range of mercury concentrations.

Monitoring results until FY2017 are available as statistics: range of mercury concentrations.

Monitoring results until FY2017 are available as statistics: mean and range of mercury concentrations and methyl ratio, range of body length, and a number of samples.

Monitoring results until FY2017 are available as statistics: range of mercury concentrations.

Monitoring results until FY2017 are available as statistics: average and concentration range of all species.

Body length, total length, body weight, sex and age are also observed (not reported).

Monitoring results until FY2017 are available as individual data. The dataset includes water temperature, pH, transparency, odor, suspended solids, cadmium, lead, arsenic, dioxins etc.

Monitoring results until FY2016 are available as statistics: mean, minimum, maximum, a number of samples positive for THg or MeHg, and geographic origin of fish and shellfish.

Monitoring results are not published. Water samples are analyzed for 27 items: THg, turbidity, chloride ion etc.

Monitoring results until FY2016 are available as statistics: mean, minimum, maximum, and sampling month.

Whether THg and MeHg exceed interim regulation values or not is reported. Monitoring results until FY2016 are available.

Responsible party	Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
Public Water Supplier	Water Quality Inspection of Raw Water and Clarified Water ^[7]	Tap water	THg	The method determined by the Minister of Health, Labour and Welfare on the basis of the Ordinance of the provisions relating to water quality standards (Ministry of Health, Labour and Welfare Notification No. 261, 2003)	Raw water: 5,954 sites (surface stream water, lake/reservoir, and groundwater) Clarified water: 6,343 sites (surface stream water, lake/reservoir, and groundwater)	Annually	

[1] Niigata Prefectural Institute of Public Health and Environmental Science, 2018. "FY2017 Annual Report of Niigata Prefectural Institute of Public Health and Environmental Science Volume 33", Online: http://www.pref.niigata.lg.jp/hokanken/1356857836913.html References (in Japanese).

[2] Saitama Prefecture 2018. "River Water Monitoring Survey", Online: https://www.pref.saitama.lg.jp/b1002/kasenmonitorling.html (in Japanese).

Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government. "Results of Mercury Contamination Survey in Seafood", Online: http://www.fukushihoken.metro.tokyo.jp/shokuhin/osen/01 suigin.html (in Japanese). [3]

- [4] Kumamoto Prefectural Government, Kumamoto Prefectural Institute of Public Health and Environmental Science, 2017. "Annual Report Vol.47 (2017), Kumamoto Prefectural Institute of Public Health and Environmental Science", Online: https://www.pref.kumamoto.jp/common/UploadFileOutput.ashx?c id=3&id=25845&sub id=2&flid=174271 (in Japanese).
- [5] Kagoshima Prefecture, 2018. "Environmental White Paper (2017), Kagoshima Prefecture", Online: https://www.pref.kagoshima.jp/ad01/kurashi-kankyo/kankyo/sougou/hakusho/h29/documents/65100 20180330003345-1.pdf (in Japanese).

[6] Kagoshima Prefectural Institute for Environmental Research and Public Health, Dec. 2017. "Annual Report of Kagoshima Prefectural Institute for Environmental Research and Public Health Volume 18", Online: https://www.pref.kagoshima.jp/ad08/kurashi-kankyo/kankyo/kankyohoken/shoho/documents/64396 20180227161739-1.pdf (in Japanese).

- [7] Public Interest Incorporated Association Japan Water Work Association, 2018. "Water Supply Statistics FY2016, Volume 99" (in Japanese).
- Public Interest Incorporated Association Japan Water Work Association. "Database of Water Quality of Aqueduct", Online: http://www.jwwa.or.jp/mizu/index.html (in Japanese). [8]

Responsible party	Programme	Media	Mercury species	Methodology / analytical method	Location / number of samples	Monitoring period and frequency	
MOE	Soil Quality Monitoring in the Disaster Area of Great East Japan Earthquake ^{[1], [2]}	Soil	THg	Soil quality examination though leaching and content tests.	Primary survey: 78 sites Secondary survey: 122 sites	Primary survey: In 2011 Secondary survey: In 2012	
National Institute for Environmental Studies, Niigata Institute of Technology	-	Air	Speciated mercury (GEM, GOM, PBM)	Using Tekran - Cold vapor atomic fluorescence spectrometry with denuder collection for GOM and quartz fiber filter collection for PBM (heating	Kashiwazaki (Niigata pref.)	1 Nov17 Dec. 2013	
NIES	-			vaporization method)	Yaizu (Shizuoka pref.)	FebMar. 2010, JanMar. 2011, Dec. 2011-Mar. 2012, JanMar. 2013	
NIMD	Survey of Mercury and Health Effects in Taiji Town ^[3]	Human - Hair	THg	Heated vaporization atomic absorption spectrometry	Residents in Taiji town, Wakayama prerf. (Including members of fisheries cooperative association) Total 1,137 people: - 765 people only in summer; 120 people only in winter; and 252 people in both seasons	JunAug. 2009 and Feb. 2010	

Table 7. Monitoring conducted in the past decade

[1] MOE, Aug. 2011. "Survey results of soil quality monitoring in the disaster area", Online: http://www.env.go.jp/press/press.php?serial=14130 (in Japanese). References

[2] MOE, Feb. 2012. "2nd survey results of soil quality monitoring in the disaster area", Online: http://www.env.go.jp/press/press.php?serial=14840 (in Japanese).

[3] NIMD, Apr. 2010. "FY2009 Results of the Survey of Mercury and Health Effects in Taiji Town", Online: http://nimd.env.go.jp/kenkyu/report/20100427_taiji_report.html (in Japanese).

Details of available data (as of January 2019)

Monitoring results until FY2016 are available as statistics: mean, minimum, maximum, and a number of measurements [8].

Water samples are also analyzed for substances of environmental quality standards for water (cadmium, lead, chromium(VI), arsenic, carbon tetrachloride,

Dichloromethane, etc.) and pesticides.

Details of available data (as of January 2019)

Monitoring results are available as individual data. The Dataset includes address, sampling date and depth. Soils are also analyzed for substances of environmental quality standards for soil pollution (cadmium, chromium(VI), cyanide compounds, lead, arsenic, etc.), dioxins, pH and electrical conductivity of soil suspensions.

Monitoring results are available as individual data.

Monitoring results are available as individual data.

Monitoring results are available as statistics: geometric mean, minimum, maximum, mean age by sex. Information on age, sex and seafood consumptions are collected by questionnaires.