A Quick Guide to Opportunities for Co-Benefits from Plant Optimization and Existing Pollutants Control Measures

Minamata Convention on Mercury (COP3)

25 to 29 November 2019

Geneva, Switzerland

Carlos E. Romero

Energy Research Center Lehigh University

Coal-Boiler Boiler and Air Pollution Control Devices

Factors Affecting Mercury Emissions

Coal

- Mercury and sulfur content
- Halogen content
- Coal cleaning processes

Boiler Operation

- Combustion conditions
- Flue gas conditions
- Other operating conditions

Boiler Design/Other Emissions Control Systems

- Back-pass arrangement
- Air pollution control devices (APCDs)

Fate of Mercury in Coal-Fired Boilers

Co-Benefit of Existing Pollutants Control Measures

Co-Benefit Methods of Control

- Selective Catalytic Reduction (SCR) Systems Increase mercury oxidation.
- Electrostatic Precipitators (ESP) and Baghouse Systems – Capture particle-bound mercury
- Wet Flue Gas Desulfurization (WFGD) Systems

 Capture oxidized Hg. Mercury reentrainment needs to be minimized.
- Dry Sorbent Injection Systems Improves mercury capture by sorbent acting on SO₃ removal.

Direct Methods of Control

- Activated Carbon Injection (ACI) Uses Powdered Activated Carbon (PAC). Particulate control needed. Can be used in the WFGD.
- Halogen Addition Injected with the coal.
 Promotes mercury oxidation for fly ash and WFGD capture.
- WFGD Additive Proprietary and sulfide based reagents prevent mercury re-entraintment.

Mercury Optimization in Boilers

- Boiler controllable parameters impact combustion in the furnace
- Those parameters impact gas temperatures and fly ash characteristics
- Fly ash with higher unburned carbon, smaller size and larger porosity works better for mercury reduction
- Mercury can be reduced 50% in average by boiler tuning. Heat rate trade-off?

Mercury Optimization in Wet FGDs

- Wet FGD's in combination with SCR control devices can achieve mercury removals up to 95%.
- □ Hg²⁺ is absorbed in the FGD liquid slurry and reacts with sulfides from the flue gas.
- More sulfides reduce Hg²⁺ to Hg⁰ (reemission).
- ORP is used as an indicator of mercury control in Wet FGD.

Direct Methods of Mercury Removal

Example of Optimized Operation

A Holistic Approach to Mercury Emissions Control Can Result in \$ Millions Annual Savings

- Optimization of Current Boiler Operation
- Installation of Co-Benefit Equipment*
- **Optimization of APCD Operation**
- Installation of Mercury Control Technology
- **Optimization of Mercury Control System**

*As required by regulation on other pollutants

Thank You!!!

