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1 Introduction 

The production of cement requires considerable material input to burn clinker which is mixed with 
certain additives to form the final product: cement (Figure 1). Cement has become an indispensable 
material to construct buildings and infrastructure elements (bridges, tunnels, dams, sewers, power 
plants etc.). For the moment, there is no substitute in sight. For decades, the process to produce 
clinker has been subject to optimisation efforts. From an environmental point of view, this mainly 
concerns the reduction of energy consumption and the minimisation of emissions, especially to air. 
From the economic point of view, the focus is on the substitution of conventional fuels by 
alternatives, especially the use of waste-derived fuels with sufficient calorific value, also called 
alternative fuels. To a minor extent, conventional raw materials are also substituted by different types 
of waste, also called alternative raw materials. In some cases, alternative fuels and alternative raw 
materials are processed as part of the waste management infrastructure or owing to their availability. 
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In this document, the focus is directed on the clinker production process as it is the dominant source 
of mercury emissions to air.  

2.2 The clinker production process 

The basic chemistry of the clinker production process begins with the decomposition of calcium 
carbonate (CaCO3) present in the raw material at about 900 °C to leave calcium oxide (CaO, lime) 
and liberate gaseous carbon dioxide (CO2); this process is known as calcination. This is followed by 
the clinkerisation process in which the calcium oxide reacts at high temperature (typically 1,400 °C – 
1,500 °C) with silica, alumina and ferrous oxide to form the silicates, aluminates and ferrites of 
calcium that comprise the Portland clinker  (SC BAT Cement, 2008). 

Basically, the clinker production process consists of the clinker burning as such (preheating, kiln 
firing process with or without precalcination, and with or without a kiln-gas bypass) followed by the 
clinker cooling. The burnt clinker is fed to the cement mill where clinker is ground together with 
additives to produce the final product (i.e., cement). 

2.2.1 Description of clinker burning  

There are four main process routes for the manufacture of cement – the wet, semi-wet, semi-dry and 
dry processes. The choice of process is, to a large extent, determined by the state of the raw materials 
(dry or wet).  

i. In the wet process, the raw materials are ground with water to form a pumpable slurry with a 
water content of 28 – 42 per cent. The slurry is directly fed into the kiln. The production 
capacity of this process is between 100 and 3,600 metric tons/day (t/d). The wet process 
requires more energy, and is thus more expensive to operate. 
 

ii. In the semi-wet process, the slurry is first dewatered in filter presses. The residual water 
content varies between 18 and 23 per cent. The filter cake is extruded into pellets and fed to a 
grate preheater. This type of kiln with grate preheaters were developed by O. Lellep and the 
company Polysius; thus, these kilns are called Lepol kilns (Locher, 2000, p 58). The 
production capacity of this process is between 100 and 3,000 t/d.  
 

iii. In the semi-dry process, dry raw meal is pelletised with water and fed into a grate preheater 
before the kiln. This type of kiln is also called Lepol kiln. However, the water content of the 
feed is further reduced to 11 – 14 per cent. The production capacity of this process is between 
500 and 3,200 t/d. Plants using semi-dry processes are likely to change to dry techniques 
whenever an expansion or a major improvement is required. 
 

iv. In the dry process, the raw materials are ground and dried to raw meal in the form of a 
flowable powder with a water content of less than 1 per cent. The dry raw meal is fed to a 
cyclone preheater (4 to 6 stages) or a precalciner kiln, or more rarely, to a long dry kiln. Kilns 
with preheaters are more energy efficient and are significantly shorter (40 – 100 m). Dry 
process kilns are the vast majority of existing kilns. Production capacity may vary between 
500 and >10,000 t/d.  
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Table 1: Average values and ranges of the mercury content of natural and alternative raw 
materials as well as of conventional and alternative fuels according to different sources,  

values in [ppm] 

Legend: Min: minimum; Max: maximum; Av: average  

2.3.2 Mercury behaviour and mercury balances 

Due to the high volatility of elemental mercury and most of mercury compounds, the mercury content 
in the clinker is nil or negligible (Weisweiler/Keller, 1992; Kirchartz, 1994, pp 57 and 63; Locher, 
2000, p 156; Eriksen et al., 2007; Renzoni et al., 2010, pp 57, X and XIII). As the raw materials and 
fuels are burned, mercury is released and an external mercury cycle is formed.  

As a consequence of the external cycle, mercury concentrates between the preheater and the dust 
abatement facilities (electrostatic precipitator or bag filter), often just called dust filter. However, a 
part of the mercury is always emitted with the kiln waste gas. If no filter dust is discarded, practically 
all mercury input will be finally emitted with the waste gas (Weisweiler/Keller, 1992; Paone, 2008; 
Linero, 2011; ecra, 2013). This is logical as mercury does not end up in the clinker, the only way 
mercury can leave the system is its emission with the waste gas. In order to quantify the enrichment of 
mercury in the external cycle as well as the percentage of its emission with the waste gas, mercury 
balances need to be carried out.  

Oerter, 2007 US PCA, 2006

Min Max Av Min Max Min Max 50 percentile Min Max Av Av

Limestone 0.005 0.1 0.04 0.02 0.017

Marl 0.005 0.1 0.03 0.052

Clay 0.01 0.5 0.2 0.002 0.45 0.02 0.15 0.09

Sand 0.01 1 0.02 < 0,005 0.55 0.03 0.029

Gypsum < 0,005 0.08

Iron ore 1 0.5 0.001 0.8 0.17 0.078

Raw meal 0.008 1 0.06 0.01 1 0.01 0.5 0.03 0.02 0.6 0.07

Spent foundrysand 0.03 4.4 0.3 0.02

Synthetic Gyspum anhydrite 0.06 1.3 0.1 0.03 1.3

Blast furnace slag 0.01 1 0.6 < 0,005 0.2 0.012

Ash from burning processes, 

 bottom ash from lignite
0.003 1.4 0.3

Coal fly ash 0.04 2.4 0.3 < 0,002 0.8 0.34 0.2

Hard coal 0.01 3 0.3 0.1 13 0.4 0.1 3.3 0.42

Lignite 0.01 0.7 0.2 0.03 0.11 0.09

Heavy oil 0.006

Pet coke 0.01 0.09 0.05 0.01 0.71 < 0,5

Waste tyres 0.1 1 0.4 0.01 0.4 0.17

Waste oil 0.01 2 0.3 0.1 0.001 0.2

Waste wood 0.01 1 0.2 0.18 1 0.31 0.37

Fractions from municipal, 

commercial and industrial 

waste

< 0,01 1.4 0.3

Fractions of industrial waste 0.25

Fractions of municipal waste 0.26

Meat and bone meal 0.2

Municipal sludge 0.3 2.5 0.31 1.45 1 5 2.6

Liquid waste‐derived fuel < 0,06 0.22

Solid waste derived fuel < 0,07 2.77

Oil shale (also a raw 

material)
0.05 0.3 0.2 0.05 0.3 0.057

FZKA, 2003 Renzori et al., 2010 Bref CLM, 2013 CH Buwal, 1999

Alternatives fuels

Conventional fuels

Alternative raw materials

Natural or conventional raw materials

< 0,005 0.4 < 0,01 0.13

0.006

0.1 3.3
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measures/techniques are additional to, or are used in conjunction, with the emissions control 
measures/techniques described in the introductory section of the BAT/BEP guidance document as 
common emission controls across source categories.  

The specific level of mercury control/reduction for a cement clinker production process applying one 
or more of the measures/techniques described in this chapter can be determined using the emissions 
monitoring techniques described in section 6 of this chapter and the introductory section of the 
BAT/BEP guidance document. 

3.1 Primary measures  

3.1.1 Input control (careful selection of input materials) 

Mercury enters the kiln system as a trace element naturally present in raw materials and, to a lesser 
extent, in fuels. A careful selection and control of all substances entering the kiln in order to reduce 
mercury input along with the use of effective air pollution control devices is very important for 
reducing mercury emissions from cement clinker production. 

Many kilns may be able to reduce emissions by substituting certain components like clay or sand by 
lower-mercury raw materials than they now use. Substitution for the principal raw material, 
limestone, is more unlikely than for the other additives. Limestone constitutes 75 to 100 per cent of 
the raw material used to make clinker and most plants are located at their source of limestone for 
economic reasons. Purchasing limestone from other locations would usually be too costly due to 
transport costs. In addition, limestone quarries are often owned by the cement plant or its parent 
company and would not be available to other cement plants with different ownership. The 
characteristics of the limestone, including the mercury content, is especially relevant when choosing 
location for a new facility. 

Mercury concentrations in raw materials (limestone, marl or clay) vary significantly from quarry to 
quarry. There are even cases where mercury concentrations vary significantly within a single deposit, 
thereby sometimes requiring selective mining. In those cases, after exploration and analyses of the 
quarry, it is in principle possible to define specific parts of the quarry with higher mercury 
concentrations and to use limestone from  zones where the concentration is lower. In many cases such 
a procedure is complex to manage and cannot always be carried out.  

Other non-limestone raw materials (e.g., clay, shale, sand, and iron ore), however, are typically 
purchased from various offsite sources and transported to the plant. Plants may have access to lower-
mercury materials, although the extent to which this is feasible would have to be determined on a site-
specific basis. “Corrective” materials such as bauxite, iron ore or sand may be required to adapt the 
chemical composition of the raw mix to the requirements of the process and product specifications.  

To a limited extent, alternative raw materials are used to substitute natural raw materials and 
correctives.  

In cases where alternative raw materials lead to a significant increase in the mercury intake into the 
system they may have to be replaced by another alternative material. Fly ash, for example, can have a 
higher or lower mercury content than the raw materials it replaces so the source of fly ash may have to 
be carefully selected.  

The cement production process usually uses conventional fuels such as coal, gas, petroleum coke and 
oil as well as alternative fuels (tires, waste derived fuels, etc.). Selecting fuels, including alternative 
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fuels, with a low mercury content as well as the technique to measure mercury in the fuel and a 
quality assurance system to guarantee the characteristics of the fuels used are therefore very important 
for reducing mercury emissions from cement clinker production. 

Commonly the cement plant permits specify which waste derived raw materials and fuels the plant is 
allowed to use or burn. The mercury content in alternative raw materials and fuels can also be limited 
in the permit as well as requirements to analyse periodically and when they make a raw material or 
fuel switch to make sure that they keep within the limit. The permit of Cementa AB, Slite, in Sweden 
has a limit of less than 2 ppm mercury in some specified waste derived fuels. 

Examples of limit values for mercury content in wastes used in cement plants in some countries are 
given in Table 2. 

Type of waste Austria Germany Switzerland 

Plastic 2 1.2  

Paper 2 1.2  

Spent oil, solvents 2 1  

Sewage sludge 3   

Combustible waste 
in general 

0.5  0.5 

Waste used as raw 
material 

  0.5 

Table 2: Examples of limit values for mercury content in some wastes used in cement plants, 
values in mg/kg dry substance [ppm] (BREF CLM, 2013) 

 

Achieved environmental benefits 

Reduced mercury emissions and/or consistent levels of mercury emissions at as low level as possible. 
In 2014, 60 per cent of the fuels used at Cementa AB, Slite, in Sweden were alternative fuels. Due to 
low content in the limestone and effective input control, mercury emissions were 0.0014 mg Hg/Nm3 
(average over the sampling period, periodical measurements at reference conditions 273 K, 101,3 kPa, 
10 per cent oxygen and dry gas). The plant also has a wet scrubber for SO2 abatement but the effect of 
it on mercury emissions has not been analysed. 

Applicability 

Input control can be applied at all cement plants. 

Reference plant 

Cementa AB: Slite, Sweden  
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3.2 Secondary measures 

3.2.1 Dust shuttling 

A proven technology to limit the build-up of mercury levels within the kiln dust is the selective 
shuttling or “bleeding” of mercury enriched kiln dust.  

The mercury enriched kiln dust is extracted from the dust and mercury circulating in the kiln (see 
section 4.2).  Following its extraction, the dust is reintroduced directly at the finish mill (after the kiln) 
with clinker and gypsum. 

Dust shuttling can be done in 2 configurations:  

1. “Raw mill off” (kiln is operating alone): dust shuttling is efficient to remove mercury. 
The collected dust is dust from the preheater which has - relatively - higher mercury 
concentrations because it is not “diluted” inside the raw mill.  

2. “Raw mill on” (kiln and raw mill are operating in line because kiln gases are drying the 
raw meal inside the raw mill): dust shuttling is less efficient to remove mercury. The 
collected mercury enriched pre-heater dust is “diluted” inside the raw mill. It should be 
noted that this case is subdivided in 3 configurations: 

• Plants equipped with vertical raw mill => all kiln gases go through raw mill => 
very little mercury in filter dust => better to do “raw mill off” dust shuttling only; 
this also applies to plants with ball mill and high raw material moisture content; 

• Plants equipped with ball raw mill => some kiln gases may bypass the raw mill 
=> could consider to do some “raw mill on” dust shuttling on the “bypass steam” 
if this stream is equipped with a separate dust filter; 

• Plants equipped with a “bleed” filter separate from the main “kiln and raw mill” 
filter. This smaller “bleed” filter is fed with pre-heater gas. Dust shuttling from 
this filter is efficient as long as all the remaining gas goes through the raw mill. 

 

The temperature in the dust collector is significant. The vapour pressure of mercury drops 
significantly with reduced temperature (see Figure 7.5 of the appendix). Furthermore Figure 5 shows 
that the adsorption of mercury on the dust surface increases as the temperature falls. This effect 
mainly applies to oxidized mercury and much less to elemental mercury. For a good efficiency of dust 
shuttling technology the gas temperature must be below 140 °C and preferably at/below 120 °C. In 
“raw mill on-“operation the gas temperature in the filter is usually between 90 and 120 °C. In “raw 
mill off-“operation it is usually 140 – 170 °C and can be up to 200 °C. That means that for an efficient 
dust shuttling the temperature in “raw mill off-“operation must be reduced in a conditioning tower or 
by quenching with air to a temperature range of 120 – 140 °C. Reducing the temperature below 140 
°C by water conditioning often results in corrosion of the system due to sulfuric acid condensation 
unless the walls of the dust collector and ducting are extremely well insulated. Often the hoppers of 
the dust collector must be heated. Therefore, appropriate technical measures have to be taken in order 
to avoid corrosion. 

The precipitated dust can be removed from the system independently from the filter type. In some 
cases where ESPs are used, it has been proven to be more effective to remove only the dust from the 
last section (which is usually the finer part of the dust with a higher specific surface). In other cases 
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If the shuttled dust cannot be used in the final product then it will have to be disposed of 
appropriately. 

Applicability 

This technique is applicable to new and existing installations. The use of sorbents for mercury air 
emission reduction has been reported mainly in the U.S. and Germany. 

Dust shuttling with sorbent injection is more expensive than dust shuttling alone. However, because 
the effectiveness of dust shuttling is very dependent on site specific factors, sorbent injection is more 
widely applicable and can achieve lower overall mercury emission levels. 

Cost 

When aiming at cutting peak emissions, where the sorbent is dosed only a few hours a day, the 
operating costs are low. Only costs for electricity (fan and dosing unit) and consumption of sorbent 
(about one big bag per day which corresponds to about one metric ton) have to be covered. The 
specific costs are in the range of 0.06 – 0.08 US$/metric ton clinker. At these levels, it is most likely 
that the sorbent contained in the filter dust can be added to the cement. Consequently, no additional 
disposal costs have to be covered. 

In case of continuous injection, if the dust with mercury laden sorbent cannot be added to the cement 
mill it has to be disposed of properly.  

The investment costs for the bag filter and dosing unit are about 50,000 – 100,000 US$ depending on 
the supplier and plant capacity. 

Reference plants 

- Lafarge Zement Wössingen Ltd. ,Walzbachtal/Germany (recently sold to CRH Irish Cement)  

- Cemex OstZement GmbH, Rüdersdorf/Germany  

- Holcim Zementwerk Beckum, Kollenbach/Germany (before Cemex) 

- Lehigh Cement: Cupertino, California/USA 

- Lehigh Cement: Tehachapi, California/USA 

3.2.3 Sorbent injection with polishing baghouse 

In this technique sorbent is injected downstream of the main particulate control combined with a 
polishing filter to remove the mercury laden sorbent. Depending on the mercury emissions removal 
requirement the sorbent can be injected continuously, or for cutting peak emissions which typically 
occur during raw mill off operation. 

In order to avoid mixing the mercury laden sorbent with the preheater dust, the sorbent (e.g., activated 
carbon) is injected into the flue gas after the main dust control and a second dust filter or “polishing” 
baghouse is used to capture the spent carbon. A second dust filter is not common in the cement 
industry because of the additional capital investment. Figure 8 below illustrates the use of sorbent 
injection with a polishing baghouse. 
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The use of activated carbon injection with a “polishing” baghouse can achieve 90 per cent mercury 
removal. (Barnett, 2013) 

Cross-media effects 

The mercury laden dust from this process will have to be disposed of properly. 

Applicability 

This technique can be applied at all cement kilns. Depending on the required overall mercury 
emissions removal requirement the sorbent can be injected continuously, or for cutting peak 
emissions, which typically occur during raw mill off operation. 

In the U.S. a cement plant has successfully installed and operated an activated carbon injection 
system, where the activated carbon is injected into the flue gas after the main dust control followed by 
a “polishing” baghouse, to control mercury emissions. The kiln system at the plant is a 
preheater/precalciner system, which includes the rotary kiln, a preheater/precalciner tower, and the 
associated air pollution control system. The plant is equipped with an in-line raw mill, where the 
gases from the kiln system are routed directly to the raw mill to provide the heat to dry the raw 
materials. During operating times when the raw mill is off (approximately 15 per cent of the annual 
operating time frame), the gases bypass the raw mill and are routed directly to the baghouse. The plant 
typically, consumes 1,500,000 short tons per year of raw materials and has the capacity to produce 
1,000,000 short tons of clinker annually (US Cement 2007).  

Economics 

The U.S. EPA cost analysis for installing activated carbon injection (ACI) to control mercury at a 
cement kiln includes a polishing baghouse. These costs were estimated using costs that were 
originally developed for electric utility boilers. Using exhaust gas flow rates as the common factor, 
control costs for electric utilities were scaled to derive control costs for Portland cement kilns. Capital 
and annual cost factors ($/ton of clinker) were developed using the boiler costs and gas flow data for 
the different size boilers. In the U.S., the total capital costs to install sorbent injection with a polishing 
baghouse at a new 1.2 million short ton per year kiln were calculated at $3.2 million (2005 USD). 
Annualized costs were calculated at $1.1 million per year. (US Cement, 2010 Cost) 

Reference plants 

- Ash Grove Cement: Durkee, Oregon (USA) 

3.3 Multi‐pollutant control measures 

Air pollution control devices installed for removing nitrogen oxides and sulfur oxides can also 
achieve co-benefits of mercury capture, and are especially effective on Hg2+ emissions. 

3.3.1 Wet Scrubber 

The wet scrubber is a proven technique for flue gas desulfurization in clinker production processes 
where SO2 emissions control is necessary.  

In a wet scrubber the SOx is absorbed by a liquid or slurry which is sprayed in a spray tower. The 
absorbent is calcium carbonate. Wet scrubbing systems provide the highest removal efficiencies for 
soluble acid gases of all flue-gas desulfurisation (FGD) methods with the lowest excess stoichiometric 
factors and the lowest solid waste production rate. However, wet scrubbers also significantly reduce 
the HCl, residual dust, NH3 and, to a lesser extent, metals, including mercury emissions.  
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The slurry is sprayed counter-currently to the exhaust gas and collected in a recycle tank at the bottom 
of the scrubber where the formed sulfite is oxidised with air to sulfate and forms calcium sulfate 
dihydrate. The dihydrate is separated and depending upon the physico-chemical properties of gypsum 
this material can be used in cement milling and the water is returned to the scrubber. 

Gaseous compounds of oxidized mercury are water-soluble and can absorb in the aqueous slurry of a 
wet scrubber system, and therefore, a fraction of gas-phase oxidized mercury vapors may be 
efficiently removed. However, gaseous elemental mercury is insoluble in water and, therefore, does 
not absorb in such slurries. The speciation between oxidized mercury and elemental mercury can vary 
significantly between kilns and is also dependent on the process conditions of the kiln operation, all of 
which will affect the amount of mercury that is removed in a wet scrubber. In wet desulfurisation 
processes gypsum is produced as a by-product which is used as a natural gypsum replacement added 
to the clinker in the finish mill. 

Achieved environmental benefit 

In the U.S. five cement kilns have limestone wet scrubbers installed to control SO2 emissions which 
also co-control mercury air emissions. Based on stack tests and data from those five limestone wet 
scrubbers, up to 80 per cent of the total mercury air emissions are co-controlled (i.e., removed). 
(Barnett, 2013) 

Applicability 

A wet scrubber is typically used in cement plants with high SO2 emissions.  

For cement plants this technique is most effective where the dominant emissions of mercury are in the 
oxide form. If there are significant levels of elemental mercury, wet scrubbers are not effective unless 
additives to oxidize the mercury are used. 

Cross-media effects (other than mercury related) 

- Increased energy consumption. 

- Mercury shifted to by-product production such as gypsum. 

- Increased waste production from flue-gas desulfurisation (FGD), and when 
maintenance is carried out, additional waste may occur. 

- Increased CO2 emissions.  

- Increased water consumption.  

- Potential emissions to water and increased risk of water contamination. 

- Increased operational cost.  

- Replacement of natural gypsum  

Economics  

In 2000, the investment costs for the scrubber of Castle Cement (including plant modifications) were 
reported to be € 7 million and the operating costs were about € 0.9 per metric ton clinker. In 1998 for 
Cementa AB in Sweden, the investment costs were about € 10 million and the operating costs were 
about € 0.5 per metric ton clinker. With an initial SO2 concentration of up to 3 000 mg/Nm3 and a kiln 
capacity of 3,000 metric ton clinker/day, the investment costs in the late 1990s were € 6 million –10 
million and the operating costs € 0.5 –1 per metric ton clinker. For a reference cement plant with a 
capacity of 1,100 metric tons per day a wet scrubber operated to 75 per cent SOx reduction was 
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calculated to have investment costs of € 5.5 million, variable operating costs of € 0.6 per metric ton of 
clinker and total costs of € 3 per metric ton of clinker (year 2000 data, 10 years lifetime, 4 per cent 
interest rate, include electricity, labour and lime costs). In 2008, the European cement industry 
reported investment costs of between € 6 million and 30 million and operational costs of between € 1 
–2 per tonne clinker. (BREF CLM 2013) 

In the U.S, the total capital costs to install a wet scrubber at a new 1.2 million short ton per year kiln, 
including the cost of a continuous emissions monitoring system (CEMS), were calculated at $25.1 
million per kiln (2005 USD). Annualized costs, including monitoring, were calculated at $3.6 million 
per year per kiln. (US Cement, 2010 Cost)     

Reference plants 

- Cementa AB: Slite, Sweden 

- Holcim: Midlothian, Texas/USA 

- Lehigh Cement: Mason City, Iowa/USA 

3.3.2 Selective catalytic reduction (SCR) 

SCR reduces NOx emissions by injecting NH3 or urea into the gas stream which reacts on the surface 
of a catalyst at a temperature of about 300–400 ºC. The SCR technique is widely used for NOx 
abatement in other industries (coal fired power stations, waste incinerators) and has been applied in 
the cement industry since the 1990s (CEMBUREAU, 1997; Netherlands, 1997) in 6 cement plants 
worldwide (Germany, Italy and U.S.) The SCR catalyst consists of a ceramic body which is doped 
with catalytically reactive compounds like V2O5 or the oxides of other metals. The main task of the 
SCR technique is to reduce catalytically NO and NO2 in exhaust gases to nitrogen. 

In the cement industry, basically two systems are considered: low dust configuration between a 
dedusting unit and stack, and a high dust configuration between a preheater and a dedusting unit. Low 
dust exhaust gas systems require the reheating of the exhaust gases after dedusting, which may cause 
additional energy costs and pressure losses. High dust systems do not require reheating, because the 
waste gas temperature at the outlet of the preheater system is usually in the right temperature range for 
SCR operation. On the other hand, Low Dust systems don’t have problems with the high dust load 
before filter and thus allow much longer operation time of the catalyst. Furthermore, they are installed 
at lower temperature (smaller volume flow) allowing smaller number of catalyst layers. 

From experience in the power sector it is well known that – as a side effect – on the surface of SCR 
catalysts elemental mercury is oxidized to a certain extent. This oxidized mercury can then better be 
removed from the gas stream in a subsequent dust filter or wet scrubber. This means that with the 
SCR technique elemental mercury will be transformed into species which are easier to capture. 

Currently extensive research is carried out to improve the applicability of SCR technology for NOx 
abatement in the cement industry. Investigations at European cement plants (Germany, Austria, Italy) 
indicate that the oxidizing effect on elemental mercury is observed if SCR technique is applied in the 
exhaust gas of cement plants. This effect can only be achieved if a capture system is located after the 
SCR catalyst. That means that it works in combination with High-Dust-SCR, but not with Tail-End-
(Low Dust-) SCR. 

Achieved environmental benefits 

As an indirect environmental benefit elemental mercury is partly transformed into oxidized mercury. 
As a side effect it can improve Hg capture in combination with dust shuttling and wet scrubber.  
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Cross-media effects (other than mercury related) 

The power demand of the cement plant increases by 5-6 kwh/t clinker, lowering the energy efficiency 
of the process and increasing indirect GHG emissions. Furthermore additional waste is produced 
containing rare metals. 

Operational experience 

Currently four SCR installations are in operation in Europe and a few more are in operation (or 
demonstration) around the world. Quantification of the mercury oxidizing effect requires further 
investigation. 

Applicability 

The mercury oxidizing side effect can be achieved only in cement plants which are equipped with the 
High-Dust-SCR technique.  The increase in Hg reduction can be achieved in combination with dust 
shuttling or with a wet scrubber. 

Economics 

The results from the use of the SCR technique have shown a cost level of EUR 1.25 to 2.00 per tonne 
of clinker, depending on the plant size and the NOx removal efficiency required. The economics of 
the SCR technique is dominated by the investment costs. The use of catalysts increases the 
operational costs due to higher energy consumption due to pressure drop and cleaning air for the 
catalyst. Specific operating costs of SCR have declined to around EUR 1.75 – 2.0 per tonne of clinker. 
(BREF CLM, 2013) 

Reference plants 

- High Dust SCR: Schwenk Zement KG: Mergelstetten (Germany) 

- Low Dust SCR: SPZ Gebr. Wiesböck Gmbh: Rohrdorf (Germany) 

- LaFarge: Joppa,Illinois (USA) 

3.3.3 Activated carbon filter 

Pollutants such as SO2, organic compounds, metals (including volatile ones as mercury and thallium), 
NH3, NH4 compounds, HCl, HF and residual dust (after an ESP or fabric filter) may be removed from 
the exhaust gases by adsorption on activated carbon. The activated carbon filter is constructed as a 
packed-bed with modular partition walls. The modular design allows the filter sizes to be adapted for 
different gas throughputs and kiln capacity. (BREF CLM, 2013) 

In principle, the adsorber consists of several vertical filter beds packed with lignite coke. Each filter 
bed is subdivided into a thin bed (0.3 m) and a thick one (1.2 m). The waste gas from the bag filter is 
pressed through the lignite coke adsorber by the fan. The bed height is about 20 m. In the first, thin 
bed, the waste gas is pre-cleaned while in the second, thick bed, the pollutants are further removed 
from the waste gas. The saturated lignite coke is recycled externally and is replaced by fresh or 
recycled coke. This exchange takes place semi-continuously in small steps (every 3 hours). Fresh 
coke is only charged to the thick beds through distribution troughs, moves down the filter bed (about 
0.3 m/d). In the thin beds, the coke moves down to about 1.2 m/d. Therefore, it is called a moving bed 
adsorber. At the bottom of the thick filter beds, the lignite coke is withdrawn, and, by means of 
elevator conveyors, recycled back to the thin beds. Consequently, a counter current operation mode is 
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achieved. In 2007, the former electrostatic precipitator was replaced by a well-designed bag filter to 
achieve low dust contents prior to the adsorber. 

Achieved environmental benefits 

The most important characteristic of the activated carbon filter is the effective simultaneous removal 
of a broad spectrum of pollutants. Thereby, the removal efficiency is very high. Only some very 
volatile short chain hydrocarbons (C1- C4 molecules) are not efficiently captured and benzene is not 
totally removed. However, all other organic pollutants, including persistent organic pollutants (POPs) 
and also volatile heavy metals, especially mercury and thallium, are adsorbed with an efficiency of 
more than 90 per cent. Additionally, sulfur dioxide is reduced by more than 90 per cent. 
(Schoenberger, 2009) 

Cross-media effects 

Waste, such as used activated carbon with mercury and other pollutants such as PCDD/F have to be 
disposed of safely. 

Increased electricity consumption due to pressure drop of the adsorber is the most important cross-
media effect.  

Applicability 

The only activated carbon filter existing in the cement industry is installed at a cement works in 
Siggenthal, Switzerland. The Siggenthal kiln is a four stage cyclone preheater kiln with a capacity of 
2000 tonne clinker/day. Measurements show high removal efficiencies for SO2, metals and PCDD/F. 
During a 100 days trial, the SO2 concentrations at the filter inlet varied between 50 and 600 mg/Nm3, 
whereas the outlet concentrations were always significantly below 50 mg/Nm3. Dust concentrations 
dropped from 30 mg/Nm3 to significantly below 10 mg/Nm3. (BREF CLM, 2013)An activated carbon 
filter can be fitted to all dry kiln systems. Monitoring and control of temperature and CO are 
especially important for such processes, to prevent fires in the coke filter (BREF CLM, 2013). 

Economics 

The system at Siggenthal also includes an SNCR process and in 1999, the city of Zürich financed 
about 30 per cent of the total investment cost of approximately EUR 15 million. The investment in 
this abatement system was made to enable the cement works to use digested sewage sludge as fuel. 
Operating costs may increase. (BREF CLM, 2013) 

Reference plants 

The only reference plant in the cement sector is the activated carbon filter (lignite coke moving bed 
adsorber) at the cement works of Holcim in CH-Siggenthal. However, lignite coke moving bed 
adsorbers have also been applied in other sectors, especially in the waste incineration sector. 

 

4 Emerging Techniques 

4.1 Mercury roaster 

In the raw mill system, dust captured in the main baghouse acts as a natural adsorbent for mercury. 
This mercury enriched dust that is captured in the main baghouse is taken to the new mercury roaster 
process for cleaning before the dust is returned back to the system.  
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In this patented mercury removal process, the baghouse dust is fed to a roasting system which uses a 
heat source (for example kiln bypass gas, cooler vent gas, or hot gas generator) to heat the dust above 
the boiling point of mercury compounds. While the mercury is still in the gas phase, the gas enters a 
hot electrostatic precipitator which removes most of the cleaned dust. The dust is taken back to the 
blending silo to be part of the kiln feed. After the electrostatic precipitator, the gas stream is cooled 
below the mercury boiling point so that the mercury can condense on the dust particles that were not 
captured in the electrostatic precipitator. (flsmidth, 2015) 

Pilot testing in a laboratory setting has achieved over 95 per cent mercury removal from the baghouse 
dust, and up to 75 per cent mercury emission reduction based on mercury cycle simulations.  The 
mercury reduction rate is dependent on the mercury capture rate in the baghouse. (Paone, 2011)  

4.2 Sorbent Polymer Catalyst (SPC) Technology 

4.3   A TEC eXmercury Technology 

 

5 Best available techniques and best environmental practices 

Mercury emissions can be reduced by primary measures such as controlling the amount of mercury in 
the inputs to the kiln and secondary measures such as dust shuttling and sorbent injection. Mercury 
can also be controlled as a co-benefit of applying multi pollutant control measures such as wet 
scrubbers, selective catalytic reduction and activated carbon filters.  

The performance level associated with best available techniques and best environmental practices in  
new and existing installations for control of mercury emissions to air is below 0.03 mg Hg/Nm3 as a 
daily average, or average over the sampling period, at reference conditions 273 K, 101,3 kPa, 10 per 
cent oxygen and dry gas. 

Reported mercury emissions shows that the majority of cement plants worldwide have mercury 
emissions below 0.03 mg/Nm3. In the report Mercury in the Cement Industry (Renzoni et al., 2010) it 
was found that many values are under 0.001 mg mercury/Nm3 (under the detection limit) and very 
few values are higher than 0.05 mg mercury/Nm3. 

5.1 Primary measures  

Careful selection and control of raw materials and fuels entering the kiln is an effective way to reduce 
and limit mercury emissions.  To reduce mercury input to the kiln the following measures can be 
taken: 

- Use limit requirements on mercury content in raw materials and fuels. 

- Use of a Quality Assurance System for input materials, especially for waste derived raw 
materials and fuels, for control of mercury contents in input materials. 

-  Use of input materials with low mercury content when possible, and avoid using waste 
with high mercury content. 

- Selective mining if mercury concentrations vary in the quarry, when possible. 

-  Choose location for new facilities taking mercury content in the limestone quarry into 
account. 
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5.2 Secondary measures 

There are a number of secondary measures that should be considered, as appropriate. 

The emissions of mercury can be reduced by dust shuttling and collecting the dust instead of returning 
it to the raw feed. A way to further improve the effectiveness of dust shuttling is to lower the off-gas 
temperature after the conditioning tower to below 140ºC to improve the precipitation of mercury and 
its compounds during dust filtration.  The collected dust can be used in the cement finish mill or used 
for the production of other products. If this is not possible it has to be treated as waste and disposed of 
safely. 

Dust shuttling combined with sorbent injection achieves higher mercury removal efficiency than dust 
shuttling alone. The sorbents are usually injected during raw mill off-operation aiming at cutting peak 
emission in this operation mode. Dust shuttling with sorbent injection can achieve very low mercury 
emission levels, the mercury emissions can be reduced by (70 – 90 per cent). The emission level 
depends on which target concentration the system is designed to achieve. 

When using sorbent injection with a polishing bagfilter the sorbent is injected into the flue gas after 
the main dust control and using a second dust filter or “polishing” bag house to capture the spent 
sorbent. Depending on the required overall mercury emissions removal requirement the sorbent can 
be injected continuously, or for cutting peak emissions, which typically occur during raw mill off 
operation. The use of activated carbon injection with a “polishing” baghouse can achieve control 
efficiencies of 90 per cent mercury removal. Using these technologies, it has to be considered that the 
valorization of the shuttled dust in cement production may be limited and additional waste may be 
produced.   

Additives which further oxidize the mercury such as bromine also can increase the mercury removal 
efficiency of sorbent injection. 

5.3 Multi‐pollutant control measures 

Air pollution control devices installed for removing sulfur oxides and nitrogen oxides can also 
achieve co-benefits of mercury capture. 

The wet scrubber is an established technique for flue gas desulfurization in the cement manufacturing 
process. Gaseous compounds of oxidized mercury are water-soluble and can absorb in the aqueous 
slurry of a wet scrubber system, and therefore, a major fraction of gas-phase oxidized mercury vapors 
may be efficiently removed. However, gaseous elemental mercury is insoluble in water and, therefore, 
does not absorb in such slurries unless additives to oxidize the mercury are used. 

The selective catalytic reduction (SCR) technique reduces NO and NO2 catalytically in exhaust gases 
to N2 and, as a side effect, elemental mercury is oxidized to a certain extent. This oxidized mercury 
can be better removed from the gas stream in a subsequent dust filter or wet scrubber. This side effect 
can be used with the High Dust SCR technique, but not with Low Dust (Tail End) SCR. 

Pollutants such as SO2, organic compounds, metals (including volatile ones as mercury and thallium), 
NH3, NH4 compounds, HCl, HF and residual dust (after an ESP or fabric filter) may be removed from 
the exhaust gases by adsorption on activated carbon. The activated carbon filter is constructed as a 
packed-bed with modular partition walls. The modular design allows the filter sizes to be adapted for 
different gas throughputs and kiln capacity. 
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Using these techniques, cross media effects should be considered like shifting mercury streams to 
products such as gypsum from a wet scrubber, or producing additional wastes such as spent activated 
carbon which requires disposal 

6 Monitoring  

6.1 Introduction 

General and cross cutting aspects of testing, monitoring and reporting are discussed in the 
introductory chapter of this document. Specific aspects inherent to cement production processes will 
be discussed in this chapter. 

The objective of an emissions reporting scheme has an important impact on the type of monitoring 
chosen for a certain installation. Therefore, testing and monitoring comprise the material balance 
method (based on input sampling and analyses) and/or emission measurements (output) at the stack. 

Emission limits for mercury in the cement process may be set as an average for a certain time period 
(e.g. 8 hours, 12 hours, 24 hours, 30 days) or may be specified for shorter period of time (e.g. 30 
minutes) to prevent high peak levels. Emission limits may also be set in terms of the amount of 
mercury per amount of clinker produced (e.g. mg/t of clinker produced), like in the U.S., and in terms 
of concentration (X µg/Nm3 at Y per cent of O2, dry basis) in the stack like in Europe. In some cases 
there are also limits on the amount of mercury in raw materials and fuels, mainly where alternatives 
are used. Testing and monitoring of mercury air emissions in the cement process need to take into 
consideration all the conditions set for the specific case being tested or monitored at a facility. 

6.2 Sampling points for mercury in the cement process 

According to the mercury input and output of the cement clinker production process discussed 
previously in this document, main sampling points for mercury in the cement process would be: 

- for the material balance approach - the untreated raw materials and fuels, dust collected 
and removed from the system;  

- for emission measurement - emission from stacks. 

Emission measurements are important for comparison with emission limit values, if they have been 
set. Figure 1 of the first chapter illustrates a scheme of the main inputs and outputs of cement plants 
system, which are potential points for mercury monitoring. 

6.3 Chemical forms of mercury in the cement process 

Regarding the material balance method, the chemical binding of mercury in the solid materials is of 
low importance, as the risk of losing a part of the mecruy during sampling and analysis is low. 
However, care has to be taken during storage and treatment of samples containing mercury, as some 
of it may get lost due to adsorption to containments or heating of the sample during treatment (e.g., 
grinding). 

Regarding stack measurements, mercury may be in the form of elemental mercury or it can be in the 
oxidized form ((Hg(I) or Hg(II)), in vapor form. It may be also in particle-bound adsorbed form. 
Sampling and analysis must comprise total mercury. As analysis and detection are for elemental 
mercury, oxidized Hg must be converted to elemental mercury. Mercury oxidized compounds 
produced in the cement kiln are assumed to be e.g. HgCl2, HgO, HgBr2, HgI2, HgS and HgSO4. While 
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discrete sampling methods (spot samples) can handle both vapor and solid phases, continuous 
emission systems measure only the vapor phase since a particulate filter is used to protect the 
instrument. It can be accurate enough to measure gaseous mercury if efficient dust abatement is 
applied since the particle-bound mercury is very low at low dust concentrations. 

6.4 Mercury sampling and measuring methods for cement process  

Methods for sampling and measuring mercury in the cement process includes, for material balance, 
solid sampling and analyses of untreated raw materials and fuels, removed filter dust; and for 
emission measurements, spot sampling, semi-continuous method and continuous method at the stack, 
process control, and gas temperature in dust filter. 

6.4.1 Material balance (Indirect Method) 

The major pathways by which mercury leaves the cement kiln system is stack emissions and cement 
kiln dust, if it is removed from the kiln system.  

System mercury mass balance may offer a better estimate of emissions than spot stack measurements. 
Variability of mercury levels in fuels and in input materials and representativeness of samples will 
influence the results of a spot sample.  

In the material balance method, the sampling of raw material, fuels, and collected dust must lead to a 
representative sample. If wastes are co-incinerated, the variability of the composition could be greater 
and additional care must be taken in order to get a representative sample.  

The American Society for Testing and Materials  (ASTM) and European standards for sampling, and 
for initial preparation of solid sample for analysis, which were developed for coal sampling 
(Standards ASTM D22341   and D20132, and standard EN 932-13), may be used in the sampling of 
inputs to the  cement process. 

Sampling should be performed periodically and may comprise a composite sample at the end of a 
certain period. For example, samples of raw material, fuel and dust collected may be taken daily or 
weekly, depending of the mercury content variation. If weekly samples are taken of raw material 
components and fuels, the monthly composite samples will be made from the weekly samples. Each 
monthly composite sample should be analyzed to determine mercury concentrations representative for 
the specific month.  

The analytical methods used to determine mercury concentration may be EPA or ASTM methods 
such as EPA 16314 or 7471b5. Chemical analysis is performed by cold vapor atomic absorption 
spectroscopy (CVAAS) or by cold vapor atomic fluorescence spectroscopy (CVAFS) or by 
inductively coupled plasma mass spectrometry (ICP-MS). 

                                                      

1 ASTM Method D2234: Standard Practice for Collection of a Gross Sample of Coal 
2 ASTM Method D2013: Standard Method of Preparing Coal Samples for Analysis 
3 European Standard EN 932-1: Tests for general properties of aggregates. Methods for sampling 
4  US.EPA Method 1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic 
Fluorescence Spectrometry. Revision E, August 2012. 
5 US.EPA Method 7471b: Mercury in solid or semisolid waste (manual cold-vapor technique). Revision 2. 
February 2007 
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The monthly input rate (input mass of mercury/month) is be the product of the mercury concentration 
of the monthly samples and the respective mass of raw material components feed and fuels introduced 
in the process. The consecutive 12-month mercury input rate (input mass mercury/year) is the sum of 
the twelve individual monthly records. 

Advantages 6 : low annual cost relative to continuous and semi-continuous methods (assuming 
monthly sampling and 1 week composite sample pre month); medium accuracy representativeness for 
long term emission averages; medium precision; results are given mainly in total mercury;  

Disadvantages: low accuracy at low emission levels; method may not be usable to demonstrate 
compliance with emissions limits depending on how emission limits are set. 

6.4.2 Manual methods for mercury spot measurements (Impinger Methods)  

Manual methods of stack sampling and analysis in the cement process play an important role in order 
to check compliance in the developing world, and they are frequently used for that purpose. In a few 
developed countries (Germany, U.S.) regulations are changing requirements from spot stack sampling 
to continuous sampling and analysis (CEMS or Sorbent Trap System) in order to provide for a better 
characterization of emissions. Measurement of mercury emission by manual methods can be part of 
an annual campaign for measuring emissions of other pollutants in the cement process.  

Standards for spot measurement of mercury are mainly from Europe and the U.S. Japan also has its 
own standards. These may differentiate in terms of the form of mercury measured. Usual test methods 
for sampling and measuring mercury in stack emissions in Europe (EN methods) and in the U.S. (US 
EPA and ASTM methods), which can be used for cement plants are presented and briefly described in 
the main text of the introductory chapter.   

For kilns with in-line raw mills, a key issue associated with any type of stack sampling is that mercury 
emissions typically vary significantly depending on the mode of raw mill operation. Testing during 
both raw mill on and off operating modes is necessary to quantify long term emissions. 

Advantages: lowest annual cost relative to mass balance, continuous and semi-continuous methods; 
usually mercury is determined as part of a big measuring campaign for several pollutants, reducing 
the costs; spot measurement have been used all over the world; accuracy and precision at low levels of 
emission is medium to high; mercury speciation is possible. 

Disadvantages: the results are only for short time, then it does not give a good picture of emissions 
with time; low accuracy for long term average representativeness; method may not be usable to 
demonstrate compliance with emissions limits depending on how emission limits are set. 

6.4.3 Semi‐continuous methods  

The semi-continuous method uses sorbent material to trap Hg emission for further analysis by 
CVAFS. It can give a good characterization of emissions from a cement process and it may not be as 
expensive as CEMS, and are easier to operate and to maintain than CEMS. The reference methods are 
described in the Chapeau text.  

                                                      
6 Advantages and disadvantages for all methods are mainly based on Mazzi et al. (2006), for coal-fired 
power plants 
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In the U.S., sorbent trap based monitoring system are approved for mercury emissions monitoring in 
cement plants. Sorbent trap systems are not approved as a mercury emission monitoring system in the 
EU, due to the definition of the emission limit as daily average and partially at national level limits 
with even a shorter time. As in the USA the emission limit value is defined as (rolling) 30-day 
average the measurement with such a system is acceptable and widely used.  

Advantages: medium annual cost compared to other methods listed; high accuracy for low mercury 
levels; medium to high representativeness of long term average emission; high precision. 

Disadvantages: possible plugging of sorbent traps due to eventual high emissions of mercury, e.g. 
when mill is off; method may not be usable to demonstrate compliance with emissions limits 
depending on how emission limits are set; method does not provide continuous mercury data that can 
be used to operate mercury controls in the most efficient manner. 

6.4.4 Continuous emission monitoring systems for mercury (mercury CEMS) 

Continuous emission monitoring is an important tool to gain better knowledge about time- and 
operation-related variations of mercury emissions from stationary sources and to control the operation 
of mercury abatement devices. In Europe mercury CEMS are required in some countries like Austria 
and Germany for cement plants using alternative fuels.  

In Germany cement kilns using alternative fuels must be equipped with mercury CEMS since the year 
2000. The first generation of mercury CEMS was developed in the 1990s and underwent their 
suitability tests between 1994 and 2001. The experiences have shown that, despite the successful 
completion of the suitability testing, difficulties arose in practice with regard to the stable long-term 
operation of CEMS. Instruments were modified and improved over time, as part of the experience 
gained with their use.  

In 2013 the U.S. approved a final rule setting national emission standards for hazardous air pollutant 
for the Portland cement manufacturing industry, which includes mercury specific limits. According to 
this rule, cement plants subject to limitations on mercury emissions will be required to comply with 
the mercury standards by operating a mercury CEMS or a sorbent trap based monitoring system.  

Advantages: medium to high accuracy at low levels; high representativeness of long term averages; 
medium to high precision; provides continuous data that can be used to operate mercury controls in 
the most efficient manner.  

Disadvantages: higher annual cost compared to other methods; periodic quality assurance 
procedures, calibration and maintenance need experienced personnel; requires calibration for both raw 
mill on and raw mill off operation because mercury levels typically go beyond the calibrated mill on 
span during mill off operation. 
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